If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19-4x^2-36x=0
a = -4; b = -36; c = +19;
Δ = b2-4ac
Δ = -362-4·(-4)·19
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-40}{2*-4}=\frac{-4}{-8} =1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+40}{2*-4}=\frac{76}{-8} =-9+1/2 $
| X-(2-2x)=13+(2x-3) | | 3w+7=6w-8 | | -k^2-5k-10=0 | | 5x÷8=63 | | n^2-12n+43=7 | | 24-7z.Z=3 | | 3(3+2y)-1=2(1-4y) | | 9/3x+3=15/5x+81/9x | | 124-(5x+12)=5(x+7)+x | | -3(6x-6)+5=-18x+23 | | 6^x=59 | | 6x-(x+7)=3(2x+1) | | 5(c+2)=7c+4 | | 19-4w.W=3 | | 3(x+1)=3(-x-1) | | -3m=m-15 | | (5−4i)(2−6i)=0 | | -2y+6=-2(3y+11) | | (15c+30)=1/3(34-4c) | | 2(-3+6x)=90 | | 0.412÷x=2.00 | | y-0.6y=200 | | 10/x=15/9 | | 2(3+2x)-3=5 | | 10/x=15=9 | | 7(-5x+9)=28 | | 2/3x-7=1/4x+8 | | m+7/4=-3 | | 2/3-y=10 | | 4(20x+100)=1,360 | | 4x2+5x-6=50 | | 5-5x=2x-51 |